Martin Group

 

Sent Packing: protein engineering generates a new crystal form of Pseudomonas aeruginosa DsbA1 with increased catalytic surface accessibility

McMahon RM, Coincon M, Tay S, Heras B, Morton CJ, Scanlon MJ, Martin JL.

Acta Crystallogr D Biol Crystallogr. 2015 Dec 1;71:2386-2395. doi: 10.1107/S1399004715018519. Epub 2015 Nov 26.


Virtual Screening of Peptide and Peptidomimetic Fragments Targeted to Inhibit Bacterial Dithiol Oxidase DsbA.

Duprez W, Bachu P, Stoermer MJ, Tay S, McMahon RM, Fairlie DP, Martin JL.

PLoS One. 2015 Jul 30;7:e0133805. doi: 10.1371/journal.pone.0133805. eCollection 2015.


Small molecule inhibitors of disulfide bond formation by the bacterial DsbA-DsbB dual enzyme system.

Halili MA, Bachu P, Lindahl F, Bechara C, Mohanty B, Reid RC, Scanlon MJ, Robinson CV, Fairlie DP, Martin JL.

ACS Chem Biol. 2015 Apr 17;10(4):957-64. doi: 10.1021/cb500988r. Epub 2015 Jan 27.


Targeting virulence not viability in the search for future antibacterials.

Heras B, Scanlon MJ, Martin JL.

Br J Clin Pharmacol. 2015 Feb;79(2):208-15. doi: 10.1111/bcp.12356.


Application of fragment-based screening to the design of inhibitors of Escherichia coli DsbA.

Adams LA, Sharma P, Mohanty B, Ilyichova OV, Mulcair MD, Williams ML, Gleeson EC, Totsika M, Doak BC, Caria S, Rimmer K, Horne J, Shouldice SR, Vazirani M, Headey SJ, Plumb BR, Martin JL, Heras B, Simpson JS, Scanlon MJ.

Angew Chem Int Ed Engl. 2015 Feb 9;54(7):2179-84. doi: 10.1002/anie.201410341. Epub 2014 Dec 30.


Peptide inhibitors of the Escherichia coli DsbA oxidative machinery essential for bacterial virulence.

Duprez W, Premkumar L, Halili MA, Lindahl F, Reid RC, Fairlie DP, Martin JL.

J Med Chem. 2015 Jan 22;58(2):577-87. doi: 10.1021/jm500955s. Epub 2014 Dec 18.


SNARE-ing the structures of Sec1/Munc18 proteins.

Archbold JK, Whitten AE, Hu SH, Collins BM, Martin JL.

Curr Opin Struct Biol. 2014 Dec;29:44-51. doi: 10.1016/j.sbi.2014.09.003. Epub 2014 Oct 2.


Reconciling the regulatory role of Munc18 proteins in SNARE-complex assembly.

Rehman A, Archbold JK, Hu SH, Norwood SJ, Collins BM, Martin JL.

IUCrJ. 2014 Oct 21;1(Pt 6):505-13. doi: 10.1107/S2052252514020727. eCollection 2014 Nov 1. Review.


Four structural subclasses of the antivirulence drug target disulfide oxidoreductase DsbA provide a platform for design of subclass-specific inhibitors.

McMahon RM, Premkumar L, Martin JL.

Biochim Biophys Acta. 2014 Aug;1844(8):1391-1401. doi: 10.1016/j.bbapap.2014.01.013. Epub 2014 Jan 30. Review.


Crystal Structure of the Dithiol Oxidase DsbA Enzyme from Proteus Mirabilis Bound Non-covalently to an Active Site Peptide Ligand.

Kurth F, Duprez W, Premkumar L, Schembri MA, Fairlie DP, Martin JL.

J Biol Chem. 2014 Jul 11;289(28):19810-19822. Epub 2014 May 15.


Structure of the Acinetobacter Baumannii Dithiol Oxidase DsbA Bound to EF-Tu Reveals a Novel Protein Interaction Site.

Premkumar L, Kurth F, Duprez W, Groftehauge MK, King GJ, Halili MA, Heras B, Martin JL.

J Biol Chem. 2014 May 23. pii: jbc.M114.571737. [Epub ahead of print]


Towards selective lysophospholipid GPCR modulators.

Archbold JK, Martin JL, Sweet MJ.

Trends Pharmacol Sci. 2014 May;35(5):219-26. doi: 10.1016/j.tips.2014.03.004. Epub 2014 Apr 16.


Disarming Burkholderia pseudomallei: structural and functional characterization of a disulfide oxidoreductase (DsbA) required for virulence in vivo.

Ireland PM, McMahon RM, Marshall LE, Halili M, Furlong E, Tay S, Martin JL, Sarkar-Tyson M.

Antioxid Redox Signal. 2014 Feb 1;20(4):606-17. doi: 10.1089/ars.2013.5375. Epub 2013 Sep 20.


The multidrug resistance IncA/C transferable plasmid encodes a novel domain-swapped dimeric protein-disulfide isomerase.

Premkumar L, Kurth F, Neyer S, Schembri MA, Martin JL.

J Biol Chem. 2014 Jan 31;289(5):2563-76. doi: 10.1074/jbc.M113.516898. Epub 2013 Dec 5.


Structural insights into the role of the cyclic backbone in a squash trypsin inhibitor.

Daly NL, Thorstholm L, Greenwood KP, King GJ, Rosengren KJ, Heras B, Martin JL, Craik DJ.

J Biol Chem. 2013 Dec 13;288(50):36141-8. doi: 10.1074/jbc.M113.528240. Epub 2013 Oct 29


The α-proteobacteria Wolbachia pipientis protein disulfide machinery has a regulatory mechanism absent in γ-proteobacteria.

Walden PM, Halili MA, Archbold JK, Lindahl F, Fairlie DP, Inaba K, Martin JL.

PLoS One. 2013 Nov 25;8(11):e81440. doi: 10.1371/journal.pone.0081440. eCollection 2013.


Comparative sequence, structure and redox analyses of Klebsiella pneumoniae DsbA show that anti-virulence target DsbA enzymes fall into distinct classes.

Kurth F, Rimmer K, Premkumar L, Mohanty B, Duprez W, Halili MA, Shouldice SR, Heras B, Fairlie DP, Scanlon MJ, Martin JL.

PLoS One. 2013 Nov 14;8(11):e80210. doi: 10.1371/journal.pone.0080210. eCollection 2013.


Rv2969c, essential for optimal growth in Mycobacterium tuberculosis, is a DsbA-like enzyme that interacts with VKOR-derived peptides and has atypical features of DsbA-like disulfide oxidases.

Premkumar L, Heras B, Duprez W, Walden P, Halili M, Kurth F, Fairlie DP, Martin JL.

Acta Crystallogr D Biol Crystallogr. 2013 Oct;69(Pt 10):1981-94. doi: 10.1107/S0907444913017800. Epub 2013 Sep 20.'


Comparative studies of Munc18c and Munc18-1 reveal conserved and divergent mechanisms of Sec1/Munc18 proteins.

Yu H, Rathore SS, Lopez JA, Davis EM, James DE, Martin JL, Shen J.

Proc Natl Acad Sci U S A. 2013 Aug 27;110(35):E3271-80. doi: 10.1073/pnas.1311232110. Epub 2013 Aug 5.


The Munc18-1 domain 3a loop is essential for neuroexocytosis but not for syntaxin-1A transport to the plasma membrane.

Martin S, Tomatis VM, Papadopulos A, Christie MP, Malintan NT, Gormal RS, Sugita S, Martin JL, Collins BM, Meunier FA.

J Cell Sci. 2013 Jun 1;126(Pt 11):2353-60. doi: 10.1242/jcs.126813.


Membrane curvature protein exhibits interdomain flexibility and binds a small GTPase.

King GJ, Stöckli J, Hu SH, Winnen B, Duprez WG, Meoli CC, Junutula JR, Jarrott RJ, James DE, Whitten AE, Martin JL.

J Biol Chem. 2012 Nov 30;287(49):40996-1006. doi: 10.1074/jbc.M112.349803. Epub 2012 Oct 10.


The 1.2 Å resolution crystal structure of TcpG, the Vibrio cholerae DsbA disulfide-forming protein required for pilus and cholera-toxin production.

Walden PM, Heras B, Chen KE, Halili MA, Rimmer K, Sharma P, Scanlon MJ, Martin JL.

Acta Crystallogr D Biol Crystallogr. 2012 Oct;68(Pt 10):1290-302. Epub 2012 Sep 13.


Low-resolution solution structures of Munc18:Syntaxin protein complexes indicate an open binding mode driven by the Syntaxin N-peptide.

Christie MP, Whitten AE, King GJ, Hu SH, Jarrott RJ, Chen KE, Duff AP, Callow P, Collins BM, James DE, Martin JL.

Proc Natl Acad Sci U S A. 2012 Jun 19;109(25):9816-21. doi: 10.1073/pnas.1116975109. Epub 2012 Jun 5


The weak complex between RhoGAP protein ARHGAP22 and signal regulatory protein 14-3-3 has 1:2 stoichiometry and a single peptide binding mode.

Hu SH, Whitten AE, King GJ, Jones A, Rowland AF, James DE, Martin JL.

PLoS One. 2012;7(8):e41731. doi: 10.1371/journal.pone.0041731. Epub 2012 Aug 28.


Structure and function of DsbA, a key bacterial oxidative folding catalyst.

Shouldice SR, Heras B, Walden PM, Totsika M, Schembri MA, Martin JL.

Antioxid Redox Signal. 2011 May 1;14(9):1729-60. doi: 10.1089/ars.2010.3344. Epub 2011 Jan 17. Review


Possible roles for Munc18-1 domain 3a and Syntaxin1 N-peptide and C-terminal anchor in SNARE complex formation.

Hu SH, Christie MP, Saez NJ, Latham CF, Jarrott R, Lua LH, Collins BM, Martin JL.

Proc Natl Acad Sci U S A. 2011 Jan 18;108(3):1040-5. doi: 10.1073/pnas.0914906108. Epub 2010 Dec 30


Fragment-based screening by X-ray crystallography, MS and isothermal titration calorimetry to identify PNMT (phenylethanolamine N-methyltransferase) inhibitors.

Drinkwater N, Vu H, Lovell KM, Criscione KR, Collins BM, Prisinzano TE, Poulsen SA, McLeish MJ, Grunewald GL, Martin JL.

Biochem J. 2010 Oct 1;431(1):51-61. doi: 10.1042/BJ20100651.


Characterization of the DsbA oxidative folding catalyst from Pseudomonas aeruginosa reveals a highly oxidizing protein that binds small molecules.

Shouldice SR, Heras B, Jarrott R, Sharma P, Scanlon MJ, Martin JL.

Antioxid Redox Signal. 2010 Apr 15;12(8):921-31. doi: 10.1089/ars.2009.2736.


In vivo oxidative protein folding can be facilitated by oxidation-reduction cycling.

Shouldice SR, Cho SH, Boyd D, Heras B, Eser M, Beckwith J, Riggs P, Martin JL, Berkmen M.

Mol Microbiol. 2010 Jan;75(1):13-28. doi: 10.1111/j.1365-2958.2009.06952.x. Epub 2009 Dec 3.